2,677 research outputs found

    Chimpanzee faces under the magnifying glass: emerging methods reveal cross-species similarities and individuality

    Get PDF
    Independently, we created descriptive systems to characterize chimpanzee facial behavior, responding to a common need to have an objective, standardized coding system to ask questions about primate facial behaviors. Even with slightly different systems, we arrive at similar outcomes, with convergent conclusions about chimpanzee facial mobility. This convergence is a validation of the importance of the approach, and provides support for the future use of a facial action coding system for chimpanzees,ChimpFACS. Chimpanzees share many facial behaviors with those of humans. Therefore, processes and mechanisms that explain individual differences in facial activity can be compared with the use of a standardized systems such asChimpFACSandFACS. In this chapter we describe our independent methodological approaches, comparing how we arrived at our facial coding categories. We present some Action Descriptors (ADs) from Gaspar’s initial studies, especially focusing on an ethogram of chimpanzee and bonobo facial behavior, based on studies conducted between 1997 and 2004 at three chimpanzee colonies (The Detroit Zoo; Cleveland Metroparks Zoo; and Burger’s Zoo) and two bonobo colonies (The Columbus Zoo and Aquarium; The Milwaukee County Zoo). We discuss the potential significance of arising issues, the minor qualitative species differences that were found, and the larger quantitative differences in particular facial behaviors observed between species, e.g., bonobos expressed more movements containing particular action units (Brow Lowerer, Lip Raiser, Lip Corner Puller) compared with chimpanzees. The substantial interindividual variation in facial behavior within each species was most striking. Considering individual differences and the impact of development, we highlight the flexibility in facial activity of chimpanzees. We discuss the meaning of facial behaviors in nonhuman primates, addressing specifically individual attributes of Social Attraction, facial expressivity, and the connection of facial behavior to emotion. We do not rule out the communicative function of facial behavior, in which case an individual’s properties of facial behavior are seen as influencing his or her social life, but provide strong arguments in support of the role of facial behavior in the expression of internal states

    Playful expressions of one-year-old chimpanzee infants in social and solitary play contexts

    Get PDF
    Knowledge of the context and development of playful expressions in chimpanzees is limited because research has tended to focus on social play, on older subjects, and on the communicative signaling function of expressions. Here we explore the rate of playful facial and body expressions in solitary and social play, changes from 12- to 15-months of age, and the extent to which social partners match expressions, which may illuminate a route through which context influences expression. Naturalistic observations of seven chimpanzee infants (Pan troglodytes) were conducted at Chester Zoo, UK (n = 4), and Primate Research Institute, Japan (n = 3), and at two ages, 12 months and 15 months. No group or age differences were found in the rate of infant playful expressions. However, modalities of playful expression varied with type of play: in social play, the rate of play faces was high, whereas in solitary play, the rate of body expressions was high. Among the most frequent types of play, mild contact social play had the highest rates of play faces and multi-modal expressions (often play faces with hitting). Social partners matched both infant play faces and infant body expressions, but play faces were matched at a significantly higher rate that increased with age. Matched expression rates were highest when playing with peers despite infant expressiveness being highest when playing with older chimpanzees. Given that playful expressions emerge early in life and continue to occur in solitary contexts through the second year of life, we suggest that the play face and certain body behaviors are emotional expressions of joy, and that such expressions develop additional social functions through interactions with peers and older social partners

    Chimpanzees (Pan troglodytes) produce the same types of ‘laugh faces’ when they emit laughter and when they are silent

    Get PDF
    The ability to flexibly produce facial expressions and vocalizations has a strong impact on the way humans communicate, as it promotes more explicit and versatile forms of communication. Whereas facial expressions and vocalizations are unarguably closely linked in primates, the extent to which these expressions can be produced independently in nonhuman primates is unknown. The present work, thus, examined if chimpanzees produce the same types of facial expressions with and without accompanying vocalizations, as do humans. Forty-six chimpanzees (Pan troglodytes) were video-recorded during spontaneous play with conspecifics at the Chimfunshi Wildlife Orphanage. ChimpFACS was applied, a standardized coding system to measure chimpanzee facial movements, based on FACS developed for humans. Data showed that the chimpanzees produced the same 14 configurations of open-mouth faces when laugh sounds were present and when they were absent. Chimpanzees, thus, produce these facial expressions flexibly without being morphologically constrained by the accompanying vocalizations. Furthermore, the data indicated that the facial expression plus vocalization and the facial expression alone were used differently in social play, i.e., when in physical contact with the playmates and when matching the playmates' open-mouth faces. These findings provide empirical evidence that chimpanzees produce distinctive facial expressions independently from a vocalization, and that their multimodal use affects communicative meaning, important traits for a more explicit and versatile way of communication. As it is still uncertain how human laugh faces evolved, the ChimpFACS data were also used to empirically examine the evolutionary relation between open-mouth faces with laugh sounds of chimpanzees and laugh faces of humans. The ChimpFACS results revealed that laugh faces of humans must have gradually emerged from laughing open-mouth faces of ancestral apes. This work examines the main evolutionary changes of laugh faces since the last common ancestor of chimpanzees and humans

    Apes communicate about absent and displaced objects: methodology matters

    Get PDF
    Displaced reference is the ability to refer to an item that has been moved (displaced) in space and/or time, and has been called one of the true hallmarks of referential communication. Several studies suggest that nonhuman primates have this capability, but a recent experiment concluded that in a specific situation (absent entities) human infants display displaced reference but chimpanzees do not. Here we show that chimpanzees and bonobos of diverse rearing histories are capable of displaced reference to absent and displaced objects. It is likely that some of the conflicting findings from animal cognition studies are due to relatively minor methodological differences, but are compounded by interpretation errors. Comparative studies are of great importance in elucidating the evolution of human cognition, however, greater care must be taken with methodology and interpretation for these studies to accurately reflect species differences

    Triggering social interactions:chimpanzees respond to imitation by a humanoid robot and request responses from it

    Get PDF
    Even the most rudimentary social cues may evoke affiliative responses in humans and promote socialcommunication and cohesion. The present work tested whether such cues of an agent may also promotecommunicative interactions in a nonhuman primate species, by examining interaction-promoting behavioursin chimpanzees. Here, chimpanzees were tested during interactions with an interactive humanoid robot, whichshowed simple bodily movements and sent out calls. The results revealed that chimpanzees exhibited twotypes of interaction-promoting behaviours during relaxed or playful contexts. First, the chimpanzees showedprolonged active interest when they were imitated by the robot. Second, the subjects requested ‘social’responses from the robot, i.e. by showing play invitations and offering toys or other objects. This study thusprovides evidence that even rudimentary cues of a robotic agent may promote social interactions inchimpanzees, like in humans. Such simple and frequent social interactions most likely provided a foundationfor sophisticated forms of affiliative communication to emerge
    corecore